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Many problems in engineering design involve optimizing the geometry to maxi-
mize a certain design objective. Geometrical constraints are often imposed. In this
paper, we use the level set method devised in (Osher and Seth@omput. Phys.

79, 12 (1988)), the variational level set calculus presented in (2bab, J. Comput.
Phys127,179(1996)), and the projected gradient method, as in (Ratdih Physica

D. 60, 259 (1992)), to construct a simple numerical approach for problems of this
type. We apply this technique to a model problem involving a vibrating system whose
resonant frequency or whose spectral gap is to be optimized subject to constraints on
geometry. Our numerical results are quite promising. We expect to use this approach
to deal with a wide class of optimal design problems in the futugez001 Academic Press

1. INTRODUCTION AND PROBLEM STATEMENT

This work is motivated by the need to develop methods for solving optimization probler
in engineering design. Many of these problems involve optimizing the geometry to maxim
a certain design objective. Constraints, often involving geometry, are imposed. Theref
the problems can be viewed as constrained optimization.

An example of such a problem arises in structural engineering. Here, a structure
assigned to support a given load. The objective is to make the structure as light as pos:
while satisfying a compliance constraint, which could be stated as displacing a fixed amc
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for a given load [3, 4, 17]. Such problems have been studied extensively and it has b
shown that the optimal solution is a composite in the sense that it has microstructures

Other applications of the techniques developed here include design of photonic banc
devices [8].

Here we consider a model problem of structural vibration control [3, 17]. We are giver
vibrating system whose resonant frequencies may lie in some undesirable window. We
allowed to change the geometry of the structure, or add mass to it, in order to push the r
nant frequencies away from the prespecified window. The constraint may be geometric:
the structure must have a certain topology, or it may be for another consideration—the t
mass we add to the structure must be fixed.

Another problem we consider is one where the structure has the desired resonant
quency gap, and our goal is to find a “simpler” design that still possesses the desired ¢

To demonstrate the main ideas of our approach, we study the following eigenvalue pi
lem. Consider a drum head with a fixed shape R? and variable density(x). The
resonant frequencies of the drum are found by solving the eigenvalue problem

—AU = Ao(X)U, X e Q, (1a)
u=_0, X € 022. (1b)

Let S cc © be a domain insid&. We do not assume any topology 8nWe assume that
the densityp (x) takes on two values

_[p1 forx¢g$S
p(x)_{pz forxeS’ (2)

We will deal only with the first two eigenvalueg andAi,. It is known thati; anda; are
distinct [11]. We assume for simplicity thap is separated froms for any S. We believe
we can relax this assumption by using the theory developed in [7].

The optimization problems we want to consider are as follows.

Problem 1. Solve the optimization
maxai ro mina rmaxi, — A
axiy 0 uni; o Sa)( 2— A1),
subject to the constraint
ISl = K,

Where|| S| is the area o5 andK is a prescribed number. This problem is a cartoon of thi
structural vibration control that we described earlier.

Problem 2. Solve the optimization
mSin IS subjectto A; —A; = M.

HereM is a fixed number. This represents the “simplification of a design” problem allud
to above.

It is worth noting that it is not known whether the gap maximization in Problem 1
Problem 2 admit solutions in the class of piecewise congtadt Uniqueness of the extrema
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is for gap maximization in Problem 1, and for Problem 2 is not known. In our humeric
calculations, we found that the solution is insensitive to the choice of initial guess, whi
gives strong evidence to uniqueness. A separate question is whether the solution of
optimization problems above can lie outside the class of piecewise constant functions;
in the class of homogenized composites. We do not believe that the problems above
solutions which are in the form of composites and, therefore, should not be sensitive
discretization. While these are important theoretical issues which need to be investiga
we limit our investigation to the question of developing an efficient computational approa
for problems of this type.

The challenge in solving these problems come in the fact that we do not know t
topology of S. To overcome this, we use the level set approach proposed by Osher :
Sethian [13]. The method provides an efficient way of describing time evolving curv
and surfaces which may undergo topological change. Another challenge is the pres
of one or more constraints in the optimization. We tackle this difficulty by modifying th
projected gradient method devised for deblurring and denoising of images by &uwdin
[18]. The modification comes in the fact that we use Newton’s method to project back ir
the constraint manifold after we “stray” too far from it. Therefore, viewed at a high leve
this work presents a method for dealing with optimal design problems involving geome
and constraints.

We note that Sethian and Wiegmann [20] studied the problem of structural optimizati
using level sets. The problem deals with finding a design that has minimum weight wt
at the same time meeting a specified compliance. The work is notable because it uses
set for this classical problem of “topology optimization.” The level set is used to descri
the boundary of a multiply connected domain. Also notable is a new “immersed interfe
technigue” to solve the 2-D elasticity equations in an irregular domain using a regular me
What sets the present work apart from theirs are the use of functional gradients to calct
the velocity of the level set, and the precise way we deal with the hard constraints.

Theoretical issues concerning Problem 1 for the special case of extrema of eigenva
have been investigated by Cox and McLaughlin [9]. They addressed the existence of
trema and provided a characterization of the extremal solution using the nodal dom:
of the eigenfunctions. A numerical algorithm for minimizing the first eigenvalue based
this theoretical work has been implemented in [6]. Cox [7] also studied the gradients
the eigenvalues with respect to a distributed density and, in particular, consider the c
where an eigenvalue is repeated. For the case of two-density domains, the functional
ysis of the gradients of the eigenvalues and constraints still needs to be done. We |
the work of Sokolowski and Zolesio [21] which addresses differentiability of certain func
tionals with respect to geometry. The results of their work may well be applicable to t
present problem. However, we defer investigation of the more theoretical aspects of
problem. Instead, we will focus on developing effective numerical schemes for the proble
stated.

2. LEVEL SET FORMULATION AND THE PROJECTED GRADIENT APPROACH

A key idea that makes the optimization tractable is to represent the unknoBrasd¢he
level set of a functio (x), where

S:={X:¢X) > 0}. 3)
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Thenp(x) in (2) is given by

_ [ p1 for{x:¢(x) <0}
p(x)_{pz for {x : ¢(x) > 0} )
We will now work with functiong (x) instead ofp (x).
The generic optimization problem we need to solve is
min F (¢) subject taG(¢) = 0. (5)

Ifwe are solving Problem 1, thdn(-) represents an objective associated with the eigenvalu
of (1), andG(-) represents the constraint on the mass, which we rewrite as

G(¢p) = / 1dx — K.
{x:¢>0}

For Problem 2, we take

F(¢) =/ 1dx,
{x:¢p>0}

andG(¢) = A2 — A1. In summary, what we need to address is an optimization involving
nonquadratic functional and a single nonlinear constraint. We emphasize that several o
problems described in [3, 17] fall into this class.

We use the Lagrange multiplier method to solve the optimization problem (5). T
Lagrangian, with multipliew is given by

L(#,v) = F(¢) +vG(9). (6)
The necessary condition for a minimizer is
DyL(¢,v) = DyF(¢) +vDyG(¢) = 0. (7a)
This, together with the constraint
G(p) =0 (7b)

allows us, in principle, to fingg andv. Next we address the issue of how to formally compute
the gradients oF andG with respect tap.

2.1. Gradient Calculations

To facilitate the calculation of the gradient Bfwith respect tap, we observe thaf is
a function ofp, which is given implicitly in terms ot through (4). We will use the chain
rule

DyF(¢p) =D,F Dyp,

because the derivative & with respect tq is straightforward.
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As an example, leF (¢) = 11. Then, the eigenpaiug, A1) solves

—Aup = A1p0(X)Uz, X € €,
up =0, xeadQ.

A variation in the density by an amousy results in variations im; andi;. We denote
these bysu; andsa;. Applying the variation to the partial differential equation leads to

—AdU; = A1p(X)8U1 4 SApUy + A180(X)Uy.
Rearranging, we have
—AdU; — A10(X)6Up = SA1pU1 4+ A18p(X)U1.

For the equation above to yield a nontrivéal;, the right-hand side must be orthogonal to
uz. This implies that

M Jq dp(x)ufdx

D,A1-8p =8A =
phLmoP ! Jq POOUZ dX

(8)

For functionalsF involving 1, and.,, we can proceed in a similar way.

The calculation for the gradient @f with respect tap is more complicated. There are
several ways to proceed. The approach presented by &halo[23] is an effective way
of dealing with such a calculation. Here, we follow the derivation outlined in [19]. Thi
classical approach can be found in Garabedian [10, Chap. 15]. Rigorous analysis of <
an approach for specific problems is presented in Sokolowski and Zolesio [21]; see ¢
Pironneau [16] for a general discussion.

We begin by studying the geometry of the zero level 88t= {x : ¢ (X) = 0} under a
variation in¢. Consider the situation depicted in Fig. 1. The solid curve is the zero lev
set beforep is varied; the dashed curve is the zero level set ef §¢. Suppose the s&
becomesS under the variation ig. A point x on the zero level set has been displaced by
SX.

FIG. 1. The geometry of the zero level set under variatiog.in
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The variationdp is integrated against a test functidiix)
(6p, ) = / Sp(xX) f(x)dx = / sp(x) f(x) dx,
JQ J symdiff(s,s’)

where symdiff(S, S) = (SU S)\(SN S) is the symmetric difference of the s&andS.
Because the difference BandS is infinitesimal, we can reduce the area integral to a lin
integral. Letn(x) = V¢/|V¢| denote the inward normal t8. We use the fact thap (x)

is either plus or minugp, — p1); plus whenéx - n(x) is negative, and minus otherwise.
Therefore, the integral becomes

(8o, ) = — /S(,Oz — p1)8X - n(x) f(x) ds(x),
d

whereds(x) is the incremental arclength.
We can now identify§p from the last expression as

Vo0
Vool s

To removesx from the expression, we take the variation of the equation = 0,

3p = —(p2 — p1)

8¢ + Vg -8x = 0. (9)
Therefore, we arrive at

3¢
Vo

We interpret the result as saying that whgix) is varied, the variation i (x) occurs only
along the zero level sétS.
Putting the results in (8) and (10) together, we get

6p = Dgp - 8¢ = (p2 — p1) (10)

X€dS

Ar(p2 — p1) us

fQ pu%dx s |V¢|8¢ ds(x). (11)
The same procedure can be applied to obtain gradients of objective fundtiombich
involve A1 andi,.

In Problem 1G(¢) = fsdx — K. To calculate the variation d&(¢), we need to come
up with an expression for the variation of the are&o¥Ve refer to Fig. 1. We observe that
the change in area atis positive if5x - n(x) < 0, and negative otherwise. The total change
in area then is given by

—/ 85X - n(x)ds(x).
S
Using (9) anch(x) = V¢ /|V¢|, We get
8¢
Dy,G(¢) - 8¢ = ——ds(x). 12
$G(9) - 3¢ /as|V¢| s(X) (12)

The gradient formulas will be needed in devising a computational algorithm for op
mization, which we describe next.
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2.2. Projected Gradient Algorithm

The surfacep (x) will be altered so that points on a level curve will move perpendicula
to it. This means that the change is given by the expression

8¢ +v(X)|Ve| =0.

The above is equivalent to a Hamilton—Jacobi equation if we view the change as occur
continuously in time. The function(x) represents the velocity of the level curves.

Choosing the velocity fiela(x) amounts to choosing a descent direction for the opti
mization. We choose the steepest descent direction. For the examplefpere 11, we
find, from (11) and (12), that

Dyl - 8¢ = Dyh1 - 8¢ + vDyG(4) - 8¢

_ A1(p2 — p1) 5 K
_/as{iprU%dx u1+v}|v¢| ds(x). (13)
Now we set
_ ([ Mlp2=p1) 5
56 = (Tpu% P 0 )90l (14)

By substitutings¢ given in (14) in Eq. (13), we can conclude that it is a descent directior
We can identify the velocity field(x) as

([ 2lp2—p1) ,
v(X) = (7&2 U dx ui + v). (15)

It is important to note that we have “naturally” extended the velocity from its value on t
zero level seb Sto the entire domaif exploiting the fact thati; (x) is defined in all ok2.
The only requirement for the velocity to correspond to a descent direction is for its val
be as specified in (1%)nly ond S. Therefore, an alternate implementation is to define th
velocity on the zero level set and extend it to alkvby other means, such as the method
outlined in [5, 23].

However, this descent direction may take the current estimatg(forout of the feasible
set. The value of the Lagrange multiplier will be set to ke&€p) + §¢ (x) feasible. We use
a projection approach which is based on the method described in Rualin[18] with a
small modification. The projection is based on the linearization of the constraint equat
G(¢) = 0. We insist that any update must be tangent to this set; thag isiust satisfy

DyG(¢) - 8¢ = 0. (16)
For Problem 1, this amounts to a requirement on the velocity on the zero level set. To see

we take the expression for the directional derivativ&dh (12) and usé¢ + v|V¢| = 0.
We get

/ v(X) ds(x) = 0.
aS
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In implementation, we do not evaluate the contour integral. We use Stoke’s identity
rewrite the contour integral as

/asv(X) n(x) - n(x) ds = / v(x)% n(x)ds

wARGL

vo(X) = k}(pz —pP1) -

o pPUZdx

Letting
1

we obtain a formula for the Lagrange multiplier

The linearized constraint in terms of velocity has a natural interpretation. It states that
the total area o5 to be conserved as required by the constraint, the total flux on the ze
level set must be zero.

Remark. Alternatively, one can deal directly with contour integrals by first representir
them with delta functions, and then replacing the delta functions with smoothed apprc
mations. This approach is outlined in [23] and goes as follows. We write

/ v(x)ds=/v<x>8(¢(x>>|w»|dx.
S Q

This equality uses the fact thas = {x : ¢ (x) = 0} and is formally justified. In computa-
tions, we approximaté&(x) by

for |x| > h
A [1+cos(ZX)] for |x] <h’

Thus, the line integral is approximated using an area integral.

The projection step, because we will be taking finite steps along the tangent to the feas
set, will eventually make the iterates infeasible. To put an iterate back onto the feasible
after it has “drifted” too far away from the constraint set, we use Newton’s method. Wi
the unknown being, we writed¢ (x; v) in (14) as a function of. Then we take steps

Ih(X) =

v < v —(D,G(¢ + (X, 1)) 'G(¢ + 3¢ (X, v)).

Note that we only need to perform this step when an iterate has violated the constrain
a specified tolerance. Moreover, the ingredients needed to do the computation are alr
derived in the gradient calculations.

The approach outlined can be applied to Problem 2, as well as other types of constra
optimization problems involving more constraints. We summarize the method descril
above as an algorithm in Fig. 2.
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initial guess for ¢{z)
do while not optimal
o compute DyF(¢) and DyG(¢)

e solve for Lagrange multiplier v in (16) (when
needed, solve for v via Newton’s method)

e get descent direction 8¢
e update ¢(z) to ¢(z) + add(x)

FIG. 2. Algorithm for solving minF (¢) subject toG(¢) = 0. Herex > 0 is the step size.

3. NUMERICAL EXPERIMENTS

To test out the method for optimization as outlined in Section 2.2, we consider solvi
the problem on a rectangular dom&in= [0, 1] x [0, 1.5]. We discretize&? using a regular
mesh. The update for the level surfagex) is given by

8¢ +v(X)|Ve| =0,

wherev(x) is given by (15). We view this as a discrete-time Hamilton—Jacobi equatio
with 8¢ representing the difference ¢fat two time instances. The Hamiltonian is

H(x, V$) = v(X)|Vgl.

The technology needed to solve such equations and accurately compute the correct
cosity) solution, kinks and all, is quite advanced by now. Higher order ENO [14] and WEN
[12] schemes are available. For problems involving interfaces, such as ours, we are onl
terested in the zero level set®x). This means that we can evolve the interface efficiently

14 T T ¥ L T ¥ T T T

7 . . . L A . s . s
[} 20 40 ('] 80 100 120 140 160 180 200
iteration

FIG. 3. Maximization ofi,; see Fig. 4 for corresponding densities.
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FIG. 4. Maximization ofi,: the densities as we iterate toward solution.

791 B

1 - L
-} 50 100 150 200 250 300 350 400
itaration

FIG. 5. Minimization of A;; see Fig. 6 for corresponding densities.
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FIG. 6. Minimization of A,: the densities as we iterate toward solution.

by only solving the equation in the neighborhood of the zero level set. Methods whi
exploit this feature of the problem have been proposed in [1, 15]. Note that the functi
¢ (x) is only in the computation to keep track of the interface defined by the zero level s
Because steep or flat slopes can develop in the evolutigr(of through the Hamilton—
Jacobi equation, it is advantageous to reinitia)&) using the signed distance to a zero
level set in order regularize the functigrix). This initialization, which does not affect the
computation of the zero level set, increases the accuracy of the computation [22].

In the present work, this part of the calculation consumes only a small fraction of t
computational effort. We do not implement the local method or the reinitialization. W
simply adopt the simple monotone upwind scheme devised in [13]. The calculation
the eigenvalues and eigenfunctions associated with the objectives were done using M:
routineeigs.

In all the experiments that follow, the mesh sizeAig = Ay = 0.02540 x 60 grid).
The density iso; = 1 andp, = 2. The level set function is extended periodically over the
regionQ2. Because of the scaling in the eigenfunctions, we needed to adjust steptseize



LEVEL SET METHODS FOR OPTIMIZATION PROBLEMS 283

% T v v L eeeenenns L EPTUTITOE. LIPS SO
24} -
— ApAy
.
2F 7 e Xy .
20-;: E
E13 R
18 b
15} -
12} E
1L S it E ekl il el
- - -
.-
114 b
s 1 L L ] 1 i H o
] S0 100 150 200 250 3co 350 400

fteration

FIG. 7. Maximization of ., — A;); see Fig. 8 for corresponding densities.

ensure stability. This number can be arrived at by considering the CFL condition. In ¢
implementation for solving Problem 1, the Newton iteration is invoked each time we viole
the constraint by more that 3 pixels. For Problem 2, the Newton iteration is used when
violate the gap constraint by more than 1%.

In the first example, we consider the problem of maximizing the first eigenvalue. We s
with a density distribution shown in the upper left corner of Fig. 4. Hg8e measured in
number of pixels is 779. In that figure, white correspondg;te- 2. The value of; starts
at below 8. As we iterate, the eigenvalue increases until it reaches a stable value of ar
13.5 after 200 iterations (see Fig. 3). The density distribution as a function of iteratior
displayed in Fig. 4. Note the change in the topology of the re§ias we iterate.

The second example demonstrates the process of minimizing the first eigenvalue. Sta
with the same initial density distribution as in the previous example, the algorithm fou
the minimum eigenvalue, at a little below 7.4, after 400 iterations (see Fig. 5). The den:
distribution as we progress toward the optimum is shown in Fig. 6.

Next we consider the problem of maximizing the gap betweesnda;. Itis instructive
to examine the evolution of the gap as a function of iterations in Fig. 7. We see that the sec
eigenvalue can be made larger at a modest cost of a small increase in the first eigenv
Starting with the initial density distribution in the upper left corner of Fig. 8, we found th
distribution that maximizes the gap in 400 iterations. The density distributions as we iter
are shown in Fig. 8.

The fourth example deals with minimizing the area of 8while maintaining a given
gap. This is Problem 2 described in Section 1. The desired gap correspohsgls-ta,() for
the density distribution shown in the upper left corner of Fig. 10. We show the reduction
the area oS as we iterate in Fig. 9. Figure 10 displays the density distribution as a functi
of iterations. It is remarkable that every one of the density distributions in Fig. 10 has
same gap. To see this more clearly, in Fig. 11 we show the eigenvejuasd 1, as we
iterate. We note that they move in parallel as a function of iteration, leaving the gap const
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FIG. 9. Minimization of | S|| subject to a fixed gap; see Fig. 10 for the corresponding densities.



FIG. 10. Minimization of || S|| subject to a fixed gap: the densities as we iterate toward solution. Note that :
the densities shown have the same gap.
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FIG. 11. Minimization of || S| subject to a fixed gap. Shown are the eigenvalues., and the gap as we
iterate. Note how the eigenvalues move in parallel.
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FIG. 12. Minimization of || S|| subject to a fixed gap. The gap corresponds to the density that maximizes t
gap for a fixedSin the third example.

FIG. 13. Minimization of || S|| subject to a fixed gap. Shown are the densities as a function of iterations. A
the densities shown have the same gap.
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FIG. 14. Minimization of | S|| subject to a fixed gap. This figure demonstrates that the constraint is observ
during iterations.

The final example combines the optimization processes in Problems 1 and 2. We ust
density corresponding to the maximum gap in the third example, shown now in the up
left hand corner of Fig. 13. Next, we take the gap as a constraint and reduce the 8rea
The reduction in area and the density distributions as we iterate are shown in Fig. 12
13. A density with smal|| S|| with the same gap is found. Figure 14 shows that the gap
maintained as we iterate.

We found that calculations starting with different initial guesses yield the same solutic
in all these examples. The only difference being the number of iterations taken to re
the solution. We also experimented with changing the valye, oThe results fop, = 4
are qualitatively similar to those far, = 2. However, because of the large contrast, henc
large velocities in the level sets, we had to take smaller time steps in order for the algori
to converge.

Finally we note that the problems can be made difficult by a combination of choice
ratios ofp, to p; and choice of the geometry. This can be seen when the rectangle has ne
the same sides. In this case, the second and third eigenvalues will be close to each |
while the corresponding eigenfunctions are quite different. The observed behavior is
when the eigenfunctions change between iterations, we would see very big change ir
velocities of the level sets. This could lead to nonconvergence as the algorithm goes
a cyclical mode, taking a few steps with velocity determined by the second eigenfuncti
and followed by a few steps with the velocity determined by the third eigenfunction.
treatment for this difficulty must deal with the issue of repeated eigenvalues.

4. DISCUSSION

We have presented a method for solving optimal design problems involving geome
and constraints using the level set formulation. The optimization strategy is based on
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projected gradient approach. We considered optimization problems involving eigenval
of a two-density drum either in the objective or the constraint. The results we obtained
quite promising. We believe that the general approach presented here can be appliec
wide variety of optimal design problems involving geometry and constraints.
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