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Many problems in engineering design involve optimizing the geometry to maxi-
mize a certain design objective. Geometrical constraints are often imposed. In this
paper, we use the level set method devised in (Osher and Sethian,J. Comput. Phys.
79, 12 (1988)), the variational level set calculus presented in (Zhaoet al., J. Comput.
Phys.127, 179 (1996)), and the projected gradient method, as in (Rudinet al.,Physica
D. 60, 259 (1992)), to construct a simple numerical approach for problems of this
type. We apply this technique to a model problem involving a vibrating system whose
resonant frequency or whose spectral gap is to be optimized subject to constraints on
geometry. Our numerical results are quite promising. We expect to use this approach
to deal with a wide class of optimal design problems in the future.c© 2001 Academic Press

1. INTRODUCTION AND PROBLEM STATEMENT

This work is motivated by the need to develop methods for solving optimization problems
in engineering design. Many of these problems involve optimizing the geometry to maximize
a certain design objective. Constraints, often involving geometry, are imposed. Therefore,
the problems can be viewed as constrained optimization.

An example of such a problem arises in structural engineering. Here, a structure is
assigned to support a given load. The objective is to make the structure as light as possible
while satisfying a compliance constraint, which could be stated as displacing a fixed amount
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for a given load [3, 4, 17]. Such problems have been studied extensively and it has been
shown that the optimal solution is a composite in the sense that it has microstructures [2].

Other applications of the techniques developed here include design of photonic bandgap
devices [8].

Here we consider a model problem of structural vibration control [3, 17]. We are given a
vibrating system whose resonant frequencies may lie in some undesirable window. We are
allowed to change the geometry of the structure, or add mass to it, in order to push the reso-
nant frequencies away from the prespecified window. The constraint may be geometrical—
the structure must have a certain topology, or it may be for another consideration—the total
mass we add to the structure must be fixed.

Another problem we consider is one where the structure has the desired resonant fre-
quency gap, and our goal is to find a “simpler” design that still possesses the desired gap.

To demonstrate the main ideas of our approach, we study the following eigenvalue prob-
lem. Consider a drum head with a fixed shapeÄ ∈ R2 and variable densityρ(x). The
resonant frequencies of the drum are found by solving the eigenvalue problem

−1u = λρ(x)u, x ∈ Ä, (1a)

u = 0, x ∈ ∂Ä. (1b)

Let S⊂⊂ Ä be a domain insideÄ. We do not assume any topology onS. We assume that
the densityρ(x) takes on two values

ρ(x) =
{
ρ1 for x 6∈ S
ρ2 for x ∈ S

. (2)

We will deal only with the first two eigenvaluesλ1 andλ2. It is known thatλ1 andλ2 are
distinct [11]. We assume for simplicity thatλ2 is separated fromλ3 for any S. We believe
we can relax this assumption by using the theory developed in [7].

The optimization problems we want to consider are as follows.

Problem 1. Solve the optimization

max
S
λ1 or min

S
λ1 or max

S
(λ2− λ1),

subject to the constraint

‖S‖ = K ,

Where‖S‖ is the area ofSandK is a prescribed number. This problem is a cartoon of the
structural vibration control that we described earlier.

Problem 2. Solve the optimization

min
S
‖S‖ subject to λ2− λ1 = M.

HereM is a fixed number. This represents the “simplification of a design” problem alluded
to above.

It is worth noting that it is not known whether the gap maximization in Problem 1 or
Problem 2 admit solutions in the class of piecewise constantρ(x).Uniqueness of the extrema



274 OSHER AND SANTOSA

is for gap maximization in Problem 1, and for Problem 2 is not known. In our numerical
calculations, we found that the solution is insensitive to the choice of initial guess, which
gives strong evidence to uniqueness. A separate question is whether the solution of the
optimization problems above can lie outside the class of piecewise constant functions; i.e.,
in the class of homogenized composites. We do not believe that the problems above yield
solutions which are in the form of composites and, therefore, should not be sensitive to
discretization. While these are important theoretical issues which need to be investigated,
we limit our investigation to the question of developing an efficient computational approach
for problems of this type.

The challenge in solving these problems come in the fact that we do not know the
topology of S. To overcome this, we use the level set approach proposed by Osher and
Sethian [13]. The method provides an efficient way of describing time evolving curves
and surfaces which may undergo topological change. Another challenge is the presence
of one or more constraints in the optimization. We tackle this difficulty by modifying the
projected gradient method devised for deblurring and denoising of images by Rudinet al.
[18]. The modification comes in the fact that we use Newton’s method to project back into
the constraint manifold after we “stray” too far from it. Therefore, viewed at a high level,
this work presents a method for dealing with optimal design problems involving geometry
and constraints.

We note that Sethian and Wiegmann [20] studied the problem of structural optimization
using level sets. The problem deals with finding a design that has minimum weight while
at the same time meeting a specified compliance. The work is notable because it uses level
set for this classical problem of “topology optimization.” The level set is used to describe
the boundary of a multiply connected domain. Also notable is a new “immersed interface
technique” to solve the 2-D elasticity equations in an irregular domain using a regular mesh.
What sets the present work apart from theirs are the use of functional gradients to calculate
the velocity of the level set, and the precise way we deal with the hard constraints.

Theoretical issues concerning Problem 1 for the special case of extrema of eigenvalues
have been investigated by Cox and McLaughlin [9]. They addressed the existence of ex-
trema and provided a characterization of the extremal solution using the nodal domains
of the eigenfunctions. A numerical algorithm for minimizing the first eigenvalue based on
this theoretical work has been implemented in [6]. Cox [7] also studied the gradients of
the eigenvalues with respect to a distributed density and, in particular, consider the case
where an eigenvalue is repeated. For the case of two-density domains, the functional anal-
ysis of the gradients of the eigenvalues and constraints still needs to be done. We note
the work of Sokolowski and Zolesio [21] which addresses differentiability of certain func-
tionals with respect to geometry. The results of their work may well be applicable to the
present problem. However, we defer investigation of the more theoretical aspects of this
problem. Instead, we will focus on developing effective numerical schemes for the problems
stated.

2. LEVEL SET FORMULATION AND THE PROJECTED GRADIENT APPROACH

A key idea that makes the optimization tractable is to represent the unknown setSas the
level set of a functionφ(x), where

S := {x : φ(x) > 0}. (3)
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Thenρ(x) in (2) is given by

ρ(x) =
{
ρ1 for {x : φ(x) < 0}
ρ2 for {x : φ(x) > 0} . (4)

We will now work with functionφ(x) instead ofρ(x).
The generic optimization problem we need to solve is

min F(φ) subject toG(φ) = 0. (5)

If we are solving Problem 1, thenF(·) represents an objective associated with the eigenvalues
of (1), andG(·) represents the constraint on the mass, which we rewrite as

G(φ) =
∫
{x:φ>0}

1dx− K .

For Problem 2, we take

F(φ) =
∫
{x:φ>0}

1dx,

andG(φ) = λ2− λ1. In summary, what we need to address is an optimization involving a
nonquadratic functional and a single nonlinear constraint. We emphasize that several of the
problems described in [3, 17] fall into this class.

We use the Lagrange multiplier method to solve the optimization problem (5). The
Lagrangian, with multiplierν is given by

L(φ, ν) = F(φ)+ νG(φ). (6)

The necessary condition for a minimizer is

DφL(φ, ν) = DφF(φ)+ νDφG(φ) = 0. (7a)

This, together with the constraint

G(φ) = 0 (7b)

allows us, in principle, to findφ andν. Next we address the issue of how to formally compute
the gradients ofF andG with respect toφ.

2.1. Gradient Calculations

To facilitate the calculation of the gradient ofF with respect toφ, we observe thatF is
a function ofρ, which is given implicitly in terms ofφ through (4). We will use the chain
rule

DφF(φ) = DρF Dφρ,

because the derivative ofF with respect toρ is straightforward.
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As an example, letF(φ) = λ1. Then, the eigenpair (u1, λ1) solves

−1u1 = λ1ρ(x)u1, x ∈ Ä,
u1 = 0, x ∈ ∂Ä.

A variation in the density by an amountδρ results in variations inu1 andλ1. We denote
these byδu1 andδλ1. Applying the variation to the partial differential equation leads to

−1δu1 = λ1ρ(x)δu1+ δλρu1+ λ1δρ(x)u1.

Rearranging, we have

−1δu1− λ1ρ(x)δu1 = δλ1ρu1+ λ1δρ(x)u1.

For the equation above to yield a nontrivialδu1, the right-hand side must be orthogonal to
u1. This implies that

Dρλ1 · δρ = δλ1 = −
λ1
∫
Ä
δρ(x)u2

1 dx∫
Ä
ρ(x)u2

1 dx
. (8)

For functionalsF involving λ1 andλ2, we can proceed in a similar way.
The calculation for the gradient ofρ with respect toφ is more complicated. There are

several ways to proceed. The approach presented by Zhaoet al. [23] is an effective way
of dealing with such a calculation. Here, we follow the derivation outlined in [19]. This
classical approach can be found in Garabedian [10, Chap. 15]. Rigorous analysis of such
an approach for specific problems is presented in Sokolowski and Zolesio [21]; see also
Pironneau [16] for a general discussion.

We begin by studying the geometry of the zero level set,∂S= {x : φ(x) = 0} under a
variation inφ. Consider the situation depicted in Fig. 1. The solid curve is the zero level
set beforeφ is varied; the dashed curve is the zero level set ofφ + δφ. Suppose the setS
becomesS′ under the variation inφ. A point x on the zero level set has been displaced by
δx.

FIG. 1. The geometry of the zero level set under variation inφ.



LEVEL SET METHODS FOR OPTIMIZATION PROBLEMS 277

The variationδρ is integrated against a test functionf (x)

〈δρ, f 〉 :=
∫
Ä

δρ(x) f (x) dx =
∫

symdiff(s,s′)
δρ(x) f (x) dx,

where symdiff(S, S′) = (S∪ S′)\(S∩ S′) is the symmetric difference of the setsSandS′.
Because the difference inSandS′ is infinitesimal, we can reduce the area integral to a line
integral. Letn(x) = ∇φ/|∇φ| denote the inward normal toS. We use the fact thatδρ(x)
is either plus or minus(ρ2− ρ1); plus whenδx · n(x) is negative, and minus otherwise.
Therefore, the integral becomes

〈δρ, f 〉 = −
∫
∂S
(ρ2− ρ1)δx · n(x) f (x) ds(x),

whereds(x) is the incremental arclength.
We can now identifyδρ from the last expression as

δρ = −(ρ2− ρ1)
∇φ(x)
|∇φ(x)| · δx

∣∣∣∣
x∈∂S

.

To removeδx from the expression, we take the variation of the equationφ(x) = 0,

δφ +∇φ · δx = 0. (9)

Therefore, we arrive at

δρ = Dφρ · δφ = (ρ2− ρ1)
δφ

|∇φ|
∣∣∣∣
x∈∂S

. (10)

We interpret the result as saying that whenφ(x) is varied, the variation inρ(x) occurs only
along the zero level set∂S.

Putting the results in (8) and (10) together, we get

Dφλ1 · δφ = λ1(ρ2− ρ1)∫
Ä
ρu2

1 dx

∫
∂S

u2
1

|∇φ|δφ ds(x). (11)

The same procedure can be applied to obtain gradients of objective functionalF which
involveλ1 andλ2.

In Problem 1,G(φ) = ∫S dx− K . To calculate the variation ofG(φ), we need to come
up with an expression for the variation of the area ofS. We refer to Fig. 1. We observe that
the change in area atx is positive ifδx · n(x) < 0, and negative otherwise. The total change
in area then is given by

−
∫
∂S
δx · n(x)ds(x).

Using (9) andn(x) = ∇φ/|∇φ|, We get

DφG(φ) · δφ =
∫
∂S

δφ

|∇φ|ds(x). (12)

The gradient formulas will be needed in devising a computational algorithm for opti-
mization, which we describe next.
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2.2. Projected Gradient Algorithm

The surfaceφ(x) will be altered so that points on a level curve will move perpendicular
to it. This means that the change is given by the expression

δφ + v(x)|∇φ| = 0.

The above is equivalent to a Hamilton–Jacobi equation if we view the change as occurring
continuously in time. The functionv(x) represents the velocity of the level curves.

Choosing the velocity fieldv(x) amounts to choosing a descent direction for the opti-
mization. We choose the steepest descent direction. For the example whereF(φ) = λ1, we
find, from (11) and (12), that

DφL · δφ = Dφλ1 · δφ + νDφG(φ) · δφ

=
∫
∂S

{
λ1(ρ2− ρ1)∫
Ä
ρu2

1 dx
u2

1+ ν
}
δφ

|∇φ| ds(x). (13)

Now we set

δφ = −
(
λ1(ρ2− ρ1)∫
Ä
ρu2

1 dx
u2

1+ ν
)
|∇φ|. (14)

By substitutingδφ given in (14) in Eq. (13), we can conclude that it is a descent direction.
We can identify the velocity fieldv(x) as

v(x) =
(
λ1(ρ2− ρ1)∫
Ä
ρu2

1 dx
u2

1+ ν
)
. (15)

It is important to note that we have “naturally” extended the velocity from its value on the
zero level set∂S to the entire domainÄ exploiting the fact thatu1(x) is defined in all ofÄ.
The only requirement for the velocity to correspond to a descent direction is for its value
be as specified in (15)only on∂S. Therefore, an alternate implementation is to define the
velocity on the zero level set and extend it to all ofÄ by other means, such as the method
outlined in [5, 23].

However, this descent direction may take the current estimate forφ(x) out of the feasible
set. The value of the Lagrange multiplier will be set to keepφ(x)+ δφ(x) feasible. We use
a projection approach which is based on the method described in Rudinet al . [18] with a
small modification. The projection is based on the linearization of the constraint equation
G(φ) = 0. We insist that any update must be tangent to this set; that is,δφ must satisfy

DφG(φ) · δφ = 0. (16)

For Problem 1, this amounts to a requirement on the velocity on the zero level set. To see this,
we take the expression for the directional derivative ofG in (12) and useδφ + v|∇φ| = 0.
We get ∫

∂S
v(x) ds(x) = 0.
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In implementation, we do not evaluate the contour integral. We use Stoke’s identity to
rewrite the contour integral as∫

∂S
v(x) n(x) · n(x) ds=

∫
∂S
v(x)

∇φ
|∇φ| · n(x) ds

=
∫

S
∇ ·
(
v(x)

∇φ
|∇φ|

)
dx.

Letting

v0(x) = λ1(ρ2− ρ1)∫
Ä
ρu2

1 dx
u2

1,

we obtain a formula for the Lagrange multiplierν

ν = −
∫

S
∇ · v0(x)

∇φ
|∇φ| dx

/∫
S
∇ · ∇φ|∇φ| dx.

The linearized constraint in terms of velocity has a natural interpretation. It states that for
the total area ofS to be conserved as required by the constraint, the total flux on the zero
level set must be zero.

Remark. Alternatively, one can deal directly with contour integrals by first representing
them with delta functions, and then replacing the delta functions with smoothed approxi-
mations. This approach is outlined in [23] and goes as follows. We write∫

∂S
v(x) ds=

∫
Ä

v(x)δ(φ(x))|∇φ| dx.

This equality uses the fact that∂S= {x : φ(x) = 0} and is formally justified. In computa-
tions, we approximateδ(x) by

δh(x) =
{

0 for |x| > h
1

2h

[
1+ cos

(
π |x|

h

)]
for |x| ≤ h

.

Thus, the line integral is approximated using an area integral.
The projection step, because we will be taking finite steps along the tangent to the feasible

set, will eventually make the iterates infeasible. To put an iterate back onto the feasible set
after it has “drifted” too far away from the constraint set, we use Newton’s method. With
the unknown beingν, we writeδφ(x; ν) in (14) as a function ofν. Then we take steps

ν ← ν − (DνG(φ + δφ(x, ν)))−1G(φ + δφ(x, ν)).

Note that we only need to perform this step when an iterate has violated the constraint by
a specified tolerance. Moreover, the ingredients needed to do the computation are already
derived in the gradient calculations.

The approach outlined can be applied to Problem 2, as well as other types of constrained
optimization problems involving more constraints. We summarize the method described
above as an algorithm in Fig. 2.
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FIG. 2. Algorithm for solving minF(φ) subject toG(φ) = 0. Hereα > 0 is the step size.

3. NUMERICAL EXPERIMENTS

To test out the method for optimization as outlined in Section 2.2, we consider solving
the problem on a rectangular domainÄ = [0, 1]× [0, 1.5]. We discretizeÄ using a regular
mesh. The update for the level surfaceφ(x) is given by

δφ + v(x)|∇φ| = 0,

wherev(x) is given by (15). We view this as a discrete-time Hamilton–Jacobi equation,
with δφ representing the difference ofφ at two time instances. The Hamiltonian is

H(x,∇φ) = v(x)|∇φ|.

The technology needed to solve such equations and accurately compute the correct (vis-
cosity) solution, kinks and all, is quite advanced by now. Higher order ENO [14] and WENO
[12] schemes are available. For problems involving interfaces, such as ours, we are only in-
terested in the zero level set ofφ(x). This means that we can evolve the interface efficiently

FIG. 3. Maximization ofλ1; see Fig. 4 for corresponding densities.
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FIG. 4. Maximization ofλ1: the densities as we iterate toward solution.

FIG. 5. Minimization ofλ1; see Fig. 6 for corresponding densities.
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FIG. 6. Minimization ofλ1: the densities as we iterate toward solution.

by only solving the equation in the neighborhood of the zero level set. Methods which
exploit this feature of the problem have been proposed in [1, 15]. Note that the function
φ(x) is only in the computation to keep track of the interface defined by the zero level set.
Because steep or flat slopes can develop in the evolution ofφ(x) through the Hamilton–
Jacobi equation, it is advantageous to reinitializeφ(x) using the signed distance to a zero
level set in order regularize the functionφ(x). This initialization, which does not affect the
computation of the zero level set, increases the accuracy of the computation [22].

In the present work, this part of the calculation consumes only a small fraction of the
computational effort. We do not implement the local method or the reinitialization. We
simply adopt the simple monotone upwind scheme devised in [13]. The calculation of
the eigenvalues and eigenfunctions associated with the objectives were done using Matlab
routineeigs.

In all the experiments that follow, the mesh size is1x = 1y = 0.025(40× 60 grid).
The density isρ1 = 1 andρ2 = 2. The level set function is extended periodically over the
regionÄ. Because of the scaling in the eigenfunctions, we needed to adjust step sizeα to
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FIG. 7. Maximization of (λ2 − λ1); see Fig. 8 for corresponding densities.

ensure stability. This number can be arrived at by considering the CFL condition. In our
implementation for solving Problem 1, the Newton iteration is invoked each time we violate
the constraint by more that 3 pixels. For Problem 2, the Newton iteration is used when we
violate the gap constraint by more than 1%.

In the first example, we consider the problem of maximizing the first eigenvalue. We start
with a density distribution shown in the upper left corner of Fig. 4. Here,‖S‖ measured in
number of pixels is 779. In that figure, white corresponds toρ2 = 2. The value ofλ1 starts
at below 8. As we iterate, the eigenvalue increases until it reaches a stable value of around
13.5 after 200 iterations (see Fig. 3). The density distribution as a function of iteration is
displayed in Fig. 4. Note the change in the topology of the regionSas we iterate.

The second example demonstrates the process of minimizing the first eigenvalue. Starting
with the same initial density distribution as in the previous example, the algorithm found
the minimum eigenvalue, at a little below 7.4, after 400 iterations (see Fig. 5). The density
distribution as we progress toward the optimum is shown in Fig. 6.

Next we consider the problem of maximizing the gap betweenλ2 andλ1. It is instructive
to examine the evolution of the gap as a function of iterations in Fig. 7. We see that the second
eigenvalue can be made larger at a modest cost of a small increase in the first eigenvalue.
Starting with the initial density distribution in the upper left corner of Fig. 8, we found the
distribution that maximizes the gap in 400 iterations. The density distributions as we iterate
are shown in Fig. 8.

The fourth example deals with minimizing the area of theS while maintaining a given
gap. This is Problem 2 described in Section 1. The desired gap corresponds to (λ2− λ1) for
the density distribution shown in the upper left corner of Fig. 10. We show the reduction in
the area ofSas we iterate in Fig. 9. Figure 10 displays the density distribution as a function
of iterations. It is remarkable that every one of the density distributions in Fig. 10 has the
same gap. To see this more clearly, in Fig. 11 we show the eigenvaluesλ1 andλ2 as we
iterate. We note that they move in parallel as a function of iteration, leaving the gap constant.



FIG. 8. Maximization of (λ2 − λ1): the densities as we iterate toward solution.

FIG. 9. Minimization of‖S‖ subject to a fixed gap; see Fig. 10 for the corresponding densities.



FIG. 10. Minimization of‖S‖ subject to a fixed gap: the densities as we iterate toward solution. Note that all
the densities shown have the same gap.

FIG. 11. Minimization of ‖S‖ subject to a fixed gap. Shown are the eigenvaluesλ1, λ2 and the gap as we
iterate. Note how the eigenvalues move in parallel.
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FIG. 12. Minimization of‖S‖ subject to a fixed gap. The gap corresponds to the density that maximizes the
gap for a fixedS in the third example.

FIG. 13. Minimization of ‖S‖ subject to a fixed gap. Shown are the densities as a function of iterations. All
the densities shown have the same gap.
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FIG. 14. Minimization of‖S‖ subject to a fixed gap. This figure demonstrates that the constraint is observed
during iterations.

The final example combines the optimization processes in Problems 1 and 2. We use the
density corresponding to the maximum gap in the third example, shown now in the upper
left hand corner of Fig. 13. Next, we take the gap as a constraint and reduce the area ofS.
The reduction in area and the density distributions as we iterate are shown in Fig. 12 and
13. A density with small‖S‖ with the same gap is found. Figure 14 shows that the gap is
maintained as we iterate.

We found that calculations starting with different initial guesses yield the same solutions
in all these examples. The only difference being the number of iterations taken to reach
the solution. We also experimented with changing the value ofρ2. The results forρ2 = 4
are qualitatively similar to those forρ2 = 2. However, because of the large contrast, hence
large velocities in the level sets, we had to take smaller time steps in order for the algorithm
to converge.

Finally we note that the problems can be made difficult by a combination of choice of
ratios ofρ2 toρ1 and choice of the geometry. This can be seen when the rectangle has nearly
the same sides. In this case, the second and third eigenvalues will be close to each other
while the corresponding eigenfunctions are quite different. The observed behavior is that
when the eigenfunctions change between iterations, we would see very big change in the
velocities of the level sets. This could lead to nonconvergence as the algorithm goes into
a cyclical mode, taking a few steps with velocity determined by the second eigenfunction,
and followed by a few steps with the velocity determined by the third eigenfunction. A
treatment for this difficulty must deal with the issue of repeated eigenvalues.

4. DISCUSSION

We have presented a method for solving optimal design problems involving geometry
and constraints using the level set formulation. The optimization strategy is based on the
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projected gradient approach. We considered optimization problems involving eigenvalues
of a two-density drum either in the objective or the constraint. The results we obtained are
quite promising. We believe that the general approach presented here can be applied to a
wide variety of optimal design problems involving geometry and constraints.
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